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Abstract: The results of an achievement study in mathematics conducted using the 
Integrated Mathematics, Science, and Technology (IMaST) curriculum are 
discussed. The study used both standardized test scores and student-constructed-
response items to measure students’ mathematics achievement. The study shows 
that the student achievement results are consistent with the different methods of 
instruction used in traditional curriculum versus more problem-based curricula. The 
traditional, comparison group performed significantly better in situations where 
memorization or procedural knowledge were being measured, and the experimental 
group performed significantly better on open-ended problem-solving tasks. There 
was no significant difference in the computational performance of the two groups.  
 

Introduction 
For years, fragmentation of the curriculum has been a stumbling block for students, 
especially when they are later expected to combine their knowledge in new 
situations (Jacobs, 1989). Educational standards for mathematics and science 
recommend connecting material to other disciplines and to the “real world” (NRC, 
1996; NCTM, 2000). Additionally, as the middle school concept continues to 
evolve, many have argued that the curriculum should have more subject matter 
integration (Bean, 1991; Berla, Henderson, & Kerewsky, 1989; George, Stevenson, 
Thomason, & Beane, 1992). This would potentially allow students to see both the 
connections between and complementary applications of concepts and principles 
across disciplinary lines.  Roth (1993) specifically discussed the need to develop a 
set of problem-centered learning activities which integrate mathematics and science 
and study the results of the use of such materials.  While several studies involving 
the impact of integration on students were done during the 1970’s and 80’s (e.g., 
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Friend, 1985; Shann, 1977), recent studies focus on teachers and implementation 
issues related to integrated curriculum (e.g., Venville, Wallace, Rennie, & Malone, 
1998; Lehman, 1994; Lehman & McDonald, 1988). As a result, questions regarding 
the impact of the use of integrated curriculum materials persist.   
 

The Problem 
As integrated curriculum or interdisciplinary study increases, so does the discomfort 
of many mathematicians and mathematics teachers. The question of “Where’s the 
math?” has surfaced on more than one occasion, and with more than one meaning.  
In one scenario, the question simply means “Why has mathematics not been 
included in the integrated units of study?”  While in another related scenario, it may 
refer to the lack of breadth of mathematics topics being included. For instance, data 
and statistics seem to be the only mathematics integrated in many cases. This leads 
many mathematics teachers to wonder what happened to the other mathematics 
topics. The problems represented in these scenarios are relatively easy to solve. It 
requires mathematics teachers, or mathematics specialists, to be actively involved in 
the writing and design of the integrated units of study. Additionally, breadth can be 
assured by detailing how the materials meet all of the content criteria incorporated 
in the NCTM Principles and Standards (2000). The final meaning of this question 
can often be restated as: “Where are the worksheets and drill and practice problems 
which are so prevalent in the traditional mathematics curriculum?” These are the 
thoughts of many parents and teachers when faced with innovative mathematics 
programs such as those developed through the NSF-funded Instructional Materials 
Development grants.  Many of these programs revolve around mathematics being 
taught in context rather than as isolated concepts and ideas.  These programs may 
appear, at first glance, to be lacking in mathematics content when in truth they are 
simply lacking in isolated drill and practice. In-depth examination, and experience 
with the materials can change these initial impressions. Unfortunately, many 
individuals never get past the first glance and never complete a more in-depth 
examination. Individuals need to be strongly encouraged to pursue a more thorough 
examination of materials, since this analysis is not routinely done.  
 
Perhaps the most important underlying question is “Can students who learn 
mathematics in a program without all the drill and practice worksheets still achieve 
the same level of mathematical understanding and skill as students who are taught 
mathematics in a more traditional approach?” This question calls for research on the 
impact of use of these types of programs on student achievement. The study 
reported here provides evidence regarding the impact of mathematics studied in this 
non-traditional manner. This study was based on the use of the Integrated 
Mathematics, Science, and Technology (IMaST) NSF-funded 7th grade curriculum 
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project, a project which has addressed many of the problems associated with the 
question “Where’s the math?” including the issues of student achievement.  

 
The IMaST Curriculum Project Background 

The IMaST program consists of a complete mathematics, science, and technology 
curriculum for seventh-grade students. The activities integrate concepts and 
processes from all three disciplines. It emphasizes connections through a problem-
solving approach requiring students to identify and use patterns to form conjectures, 
and to describe relationships while working together to resolve context-rich 
problems. The year-long curriculum is divided into six theme-based modules.  Each 
module was developed using the concepts and ideas typically covered in more 
traditional seventh-grade mathematics, science, and technology curricula, as well as 
additional concepts which meet new educational standards.  
 
The program was built around a learning cycle format (Marek & Cavallo, 1997) 
where students explore situations, discuss their findings to develop a concept or 
idea, apply the idea in a similar setting or context, and finally expand the idea to 
new settings and more global contexts. In this way, the IMaST program has adopted 
a constructivist (Goldin, 1990) approach to learning. Constructivist curricula present 
situations where students examine their own ideas in relation to new experiences 
which then encourage them to expand their understandings.  
 
The curriculum is designed to be taught by three teachers, one from each discipline, 
teamed together with a group of students for a total of 120 minutes per school day. 
This time can be a single flexible block, or divided into three 40 minute periods. 
The content is carefully structured to help teachers work cooperatively, and to inter-
relate ideas across content areas. Students are often placed in small groups where 
they are required to demonstrate behaviors such as shared decision making and 
supporting other’s ideas. Students do not complete worksheets of exercises but are 
instead given problems to solve. The students are provided with journal sheets to 
record information regarding the solution process while keeping a record of their 
work.  There is no isolated mathematical drill and practice involved in this program.  
Any computation or practice students receive is in context of solving problems 
related to the theme of the module.  
 
Authentic assessments are used as a basis for grading, and rubrics are provided for 
teachers in order to aid in judging student proficiency. Assessments of this type are 
available for each activity as well as for use at the end of each module. While 
individual activity assessments are typically related to a single subject, the end of 
the module assessment is an integrated assessment, requiring demonstration of 
concepts from all areas of the curriculum. In keeping with this philosophy and 
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format, students do not take traditional single subject unit/module exams as part of 
the program.    
  
Clearly, IMaST represents a non-traditional approach to the instruction and 
assessment of mathematics at the seventh-grade level.  As such, it represents an 
ideal curriculum to study and help address questions related to the mathematics 
achievement of students in non-traditional curricula versus those in a traditional 
program of study.  
 

The Study 
The research reported here was undertaken to help answer the following research 
question and its related components.  
 
How does the overall mathematics achievement of students who participate in 
seventh-grade IMaST compare to students who participate in a more traditional 
seventh-grade mathematics program?  

a) How do their problem-solving skills compare? 
b) How do their instrumental and relational knowledge compare?  
c) How do their computational skills compare?  

 
Participants 
Five schools who were using the IMaST materials for all or part of their seventh-
grade student enrollment agreed to participate in this achievement study.  These 
schools included two suburban middle schools, one urban school and two rural 
schools from three states in the Midwest.  The demographics of these schools were 
diverse, with two of the schools having a high minority population, including one 
school where approximately 90% of the population was Native American.  The 
other three schools had a low percentage of minority students.  
  
Three of the schools had both IMaST and a traditional mathematics curriculum 
being taught at the seventh-grade level, including one of the high minority schools.  
The sites where both traditional seventh-grade mathematics classes and IMaST 
classes were taught provided the comparison groups for the study.   The students at 
these sites were not randomly assigned to IMaST or traditional mathematics classes.  
The parents and students were provided with information about the IMaST project 
and the traditional mathematics program, and enrollment was based on parental and 
student choice.  The remaining two sites had all their seventh-grade students 
enrolled in IMaST, so no comparison group was available and students and parents 
were not offered the option of IMaST or traditional instruction.  This lack of 
random assignment is reflective of the realities of conducting research in most 
public schools.  An additional limitation of this study came from the high mobility 
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rate of students at several of these participating schools.  The number of students 
who had completed the full achievement study was reduced by nearly 50% from the 
start of the study to its end, due in part to the mobility of the student populations.  
While this attrition rate caused concerns, it was not avoidable.  Since the remaining 
sample size was still large enough to allow for analysis of matched pre- and post-
tests with reasonable-sized groups, the findings are still worthwhile.  
 
Instruments 
Each participating school was asked to administer the mathematics sections of the 
Stanford Achievement Test Series. These scores were recorded in terms of the grade 
placement levels for the students, where the grade placement levels were 
determined according to the Grade 7, National Norms for Form K, Advanced Level 
1 (Harcourt Brace Jovanovich, 1992). The Stanford Tests were administered in both 
early fall of the school year and again in late spring of the same school year.  These 
tests were given in an attempt to establish the growth of students in both IMaST and 
traditional classes in the schools relative to traditionally held measures of student 
competence. As such, the administered portions provided an overall mathematics 
score, and sub-test scores on concepts of number, computation and applications.  
The concepts of number section of this test has been cited as extremely procedural 
(Romberg, Wilson, Khaketla, & Chavarria, 1992), and as such was used in this 
study as a measure of instrumental understanding, rather than relational 
understanding as described by Skemp (1987).  
 
In addition to the Stanford Achievement Test in mathematics, students in the IMaST 
and comparison classes were asked to complete a series of three open-ended 
student-constructed-response items in mathematics in late spring.  While post-only 
testing is not ideal, the fall testing schedule in schools was already crowded, and it 
was thought to be counterproductive to instruction to impose additional days of 
testing at the beginning of the school year. The items used were selected from 
released items from the 1992 National Assessment of Educational Progress (NAEP) 
mathematics test. The three items selected were chosen because they were 
representative of non-traditional, student-constructed response items measuring the 
full gamut of student mathematics expectations, including understanding of number 
and operations, combinatorial reasoning, geometry, measurement, patterns, and 
functions. The three items used, and the general scoring rubric can be found in 
Appendix A.  Each of these items was scored using the 6-point rubric scale adopted 
for scoring the same items at the national and trial-state levels in the 1992 NAEP 
assessment (Dossey, 1993). To insure reliability of scoring, two scorers graded each 
student’s test, and any items with different scores were discussed to reach 
consensus.   
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Analysis 
Scores from the fall Stanford Achievement Tests were used as baseline scores for 
comparison for all spring measures. Since there was not random placement of 
students into the IMaST program at any of the schools, a t-test of means on fall 
scores was used to determine if significant differences existed between the IMaST 
and the comparison group in the fall. Based on the finding of between group 
differences in some measures of mathematics achievement in the fall, the decision 
was made to use an analysis of covariance on the standardized test results. Further, 
the schools involved in the study were interested in the differential gains that 
students in each group may achieve. As a result, the decision to use gain-score 
analysis was made. While the gain-score analysis may involve some controversy, 
the external evaluator for the project and the project statistician decided that using a 
combination of gain-score analysis and an analysis of covariance would produce the 
most conservative estimates of potential differences, as well as further protect 
against differential gain rates that might be predicted based on any significant 
differences existing in fall test data between the IMaST and comparison students.  
In this analysis, the Stanford Achievement Test score gains from fall to spring were 
used as a dependent measure, with the type of class participation as a grouping 
factor, and the fall test scores were used as the covariate.   Other variables, such as 
school or individual teacher, were not included as a grouping factor, due to the 
small sample size these groups would generate.  Additionally, it was believed that 
the teacher or classroom variable would be difficult to isolate, since each IMaST 
student had multiple multidisciplinary teachers during the study and mathematics 
was taught or reinforced by virtually all of these teachers.   
 
Since the free-response items were administered only in the spring, there was not a 
gain score to analyze, and there was not a pretest score on the same items to use as a 
covariate.  Instead, correlations were calculated between the scores on these items 
and the fall Stanford Achievement Test and subtest results, and the most highly 
correlated score was used as the covariate.  In this way, the most closely related 
measure available was used to adjust for differences in the IMaST and comparison 
group.   

Results of the Study 
Stanford Achievement Test   
Students from the five participating schools were given the portions of the Stanford 
that resulted in a Total Mathematics score, a Concept of Number score, a 
Mathematics Computation score, and a Mathematics Application score. These 
sections of the examination were administered by their teachers and the results 
forwarded to National Computer Systems in Iowa City, Iowa, for scoring. The 
results were then evaluated according to the Advanced Level 1, national norms for 
the seventh grade.  
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As there was no random placement of students into the sections of the seventh grade 
in any of the schools, the data from the fall administration of the Stanford was used 
to determine if significant differences existed between the IMaST students and the 
comparison group students.  A summary of the mean scores of each group and the 
results of the t-test comparing these means can be found in Table 1. Given that 
significant differences existed in some measures between the incoming fall scores 
for the students between the IMaST and comparison sections, the decision was 
made to use a gain-score analysis, based on grade placement levels, with their 
entering score in the corresponding area as a covariate.  

Table 1  
Mean Grade Level Scores for the Fall Stanford Achievement Tests by Group   

 Mathematics 
Total  

Concepts of 
Number 

Computation Applications 

IMaST (n) 7.898 (141) 7.926 (152) 7.949 (142) 8.417 (151) 
Comparison (n) 9.009 (54) 9.972 (56) 8.112 (60) 8.227 (57) 
Results of t-test   F=6.87 

p < 0.01 
F = 23.09 
p <  0.001 

F = 0.13 
p > 0.05 

F = 0.16 
p > 0.05 

 
Total Mathematics Testing  
The Total Mathematics gain scores for each group were first calculated.  The mean 
grade placement gain scores for the IMaST students was 0.208 grades (n = 141) and 
for the comparison group -0.090 grades (n = 54). These scores indicate that the 
comparison group actually had a mean score decrease in the spring compared to the 
fall testing. However, the analysis used the same set of norms, so the grade level 
scores should be directly comparable.  Since the fall testing data indicated there 
were significant differences in the performance of the IMaST and comparisons that 
could not be accounted for by chance alone, an Analysis of Covariance (ANCOVA) 
was used to examine differential gains. The grade placement gain score was used as 
the dependent measure, the type of class as the grouping factor, and the fall Total 
Mathematics Score grade placement was used as the covariate. The results of this 
analysis are shown in Table 2.  Based on this analysis, no significant differences 
were found between the gain in Total Mathematics scores of the IMaST students 
and the comparison group students.    

Table 2   
ANCOVA for Grade Placement Gains for Total Mathematics Score 
Source SS df Mean-Square F-Ratio p 
Type of Class 3.345 1 3.345 0.90 0.343 
Fall Total Math 97.719 1 97.719 26.39 0.000 
Error 711.087 192 3.704   
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Mathematics Computation Testing  
While the fall testing showed no significant differences in computation between the 
IMaST and comparison groups, it was decided that for consistency the same 
analysis of covariance would be calculated on all measures.  So the mean grade 
placement gain scores for computation were first determined.  The mean grade 
placement gain scores for the IMaST students was 0.354 grades (n = 145) and for 
the comparison students -0.373 grades (n = 57).  Again the comparison group spring 
scores were lower than their initial fall test scores.  The results of the analysis of 
covariance for the computation gains are shown in Table 3.  While the mean gains 
scores appear to favor the IMaST group, the analysis of covariance indicates there 
were not significant differences, at the p = 0.05 level, in the computational gain 
scores between the IMaST and comparison groups when the incoming 
computational scores are factored out.   

Table 3  
ANCOVA for Grade Placement Gains for Math. Computation Score  

Source Adj. SS df Mean-Square F-Ratio p 
Type of Class 20.26 1 20.26 3.23 0.074 
Fall Math Comp 268.76 1 268.76 42.79 0.000 
Error 1250.03 199 6.28   

 
Concepts of Number Testing  
The mean gain scores for concepts of number showed that students in the 
comparison sections (n = 58) gained 1.30 grade placements in concepts of number 
test while students in IMaST sections (n = 150) dropped 0.03 grade placements. 
According to the fall testing data the comparison group scored significantly better in 
concepts and procedures than the IMaST group at the start of the school year.  So, 
the analysis of covariance test was run to see if the fall difference accounted for the 
difference in gain scores.  The results of this analysis are found in Table 4.  While 
the fall concept of number test data was judged to have controlled a significant 
proportion of the gain scores for concepts of number test, they did not account for 
all the difference. The comparison group still had significantly higher gains in the 
concepts of number test, at the p = 0.001 level, even after controlling for the fall 
scores.  

Table 4   
ANCOVA for Grade Placement Gains for Concept of Numbers   

Source Adj. SS df Mean-Square F-Ratio p 
Type of Class 73.053 1 73.053 21.15 0.000 
Fall Number Concept 98.392 1 98.392 28.49 0.000 
Error 708.074 205 3.454   
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Mathematics Applications Testing  
The fall test scores for the IMaST and the comparison group were not significantly 
different.  However, to maintain consistency in data analysis, an analysis of 
covariance on gain scores in mathematical applications was still used   The actual 
mean gain score in mathematical applications was 0.266 grades for the IMaST 
group (n = 148) compared to a decrease of  0.199 grades for the comparison group 
(n = 58).  The results of the analysis of covariance are shown in Table 5.  After 
controlling for the fall mathematics applications scores, no significant differences 
were found in the gain scores between the two groups.   

Table 5   
ANCOVA for Grade Placement Gain for Mathematics Applications   
Source Adj. SS df Mean-Square F-Ratio p 
Type of Class 8.95 1 8.95 1.60 0.207 
Fall Math Appls 206.25 1 206.25 36.94 0.000 
Error 1133.34 203 5.58   

 
Student-Constructed Response Mathematics Examination 
The mean of the Total Student-Constructed Response scores in spring for the 
IMaST group was 6.83 points (n = 127) and for the comparison group was 4.95 
points (n = 56).  As the previous analyses indicated differences existed across the 
IMaST and comparison sections in the fall, the analyses of the student-constructed 
response data again suggested the appropriate use of an analysis of covariance 
approach.  Since there were no fall scores on the student-constructed-response 
items, the fall Total Mathematics score from the Stanford Achievement tests was 
used as the covariate. This choice was made due to the relatively high correlation 
between this score and the spring total score for the student constructed response 
items.  It also allowed for keeping more students in the analysis due to some 
differential completion of the open-ended items and achievement tests. The results 
of this analysis are shown in Table 6. 

Table 6   
ANCOVA for Total Student Constructed Response Math Score   
Source Adj. SS df Mean-Square F-Ratio p 
Type of Class 134.87 1 134.87 25.38 0.000 
Fall Stanford Total Math 
Score 

347.02 1 347.02 65.31 0.000 

Error 956.34 180 5.31   
 
The results of the ANCOVA suggest that significant differences, at the 0.001 level, 
exist between the Total Student-Constructed-Response scores for students in the 
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IMaST and comparison sections, even after controlling for the fall Total 
Mathematics scores.   
 
Since each of the three student-constructed-response items involved different 
mathematical concepts, a problem-by-problem analysis was used to examine if one 
specific area of content may have contributed more to the overall differences in 
student performance. A problem-by-problem analysis of the student-constructed 
item scores, using the same analysis of covariance methods, illustrated that a 
significant difference (p = 0.05) occurred across all three open-ended problems.  
Table 7 provides a summary of the findings across problems for the two groups.   

Table 7 
Individual Student-constructed Response Problem Means by Group   

 Sports Camp Radio Tower Dots 
IMaST  3.04 1.58 2.24 
Comparison  2.26 1.15 1.14 

 
 

Discussion of Results 
The results show what one may expect from any curriculum: that the students’ 
growth is dependent, to some degree, on the emphasis of the instructional strategies 
being utilized. While the comparison students were involved in classes of a 
traditional nature with heavy emphasis on computation, and isolated mathematical 
concepts and procedures, the IMaST students were exposed to virtually no drill and 
practice in terms of computation or utilization of isolated concepts and procedures. 
Instead the IMaST classes were involved in contextual problem solving, and 
derivation of conceptual understanding through contextual explorations and 
discussions. With extremely different instructional approaches and emphasis, one 
would expect to find differences in student achievement. Perhaps surprisingly, there 
were no significant differences in the overall mathematics achievement of these 
students, as measured by the mathematics composite score of the Stanford Test. 
This test, as with most standardized tests of its nature, is designed to measure 
achievement according to the students’ ability to perform mathematical calculations 
in isolated settings.  While it contains subsections entitled Computation, Concepts 
of Number, and Applications, its items are almost all procedural in nature, with very 
few conceptual questions, and virtually no problem solving (Romberg, Wilson, 
Khaketla, & Chavarria, 1992).  As a result one would expect it to be a valid 
instrument for assessing students’ instrumental understanding of mathematics 
(Skemp, 1987) which is the focus of a more traditional mathematics program.  
Additionally one would expect it to provide less valid information about student 
achievement in areas Skemp would term relational understanding of mathematics, 
which are more typical of an NCTM standards-based curriculum.  
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With these test limitations in mind, it was interesting to note that the computation of 
students in IMaST did not suffer.  While the IMaST students made slight gains in 
this area, and comparison students actually decreased their scores, there were no 
significant differences between the groups in change in computational facility. 
 
The Concepts of Numbers test produced the results which would be the most 
disturbing to individuals or school districts considering adopting programs such as 
IMaST. Here the students in a traditional program did out-perform students in the 
IMaST program.  A natural concern is that IMaST students do not understand 
mathematical concepts.  However, according to Romberg, et al.’s (1992) findings, 
nearly all of the items in this test are really procedural in nature, with very few 
items reflecting conceptual understanding.  As a result, without any context to aid 
the IMaST students in making sense of the situation, and without the practice on 
isolated skills, the IMaST students may be expected to be at a disadvantage on 
procedural types of items.  Thus, due to the nature of the test, these results should 
not be interpreted as meaning the students are weak in conceptual or relational 
understanding.   
 
In the Application section, one might expect to see favorable results for the 
experimental group since one would expect it to be more focused on the use of the 
mathematical knowledge. The IMaST students did make slight gains in this area 
while comparison students experienced slight drops in scores.  While the differences 
were not significant, we must also remember the test has been criticized as being 
more computational and procedural than problem solving in nature (Romberg, et al., 
1992).  
 
Using Skemp’s (1987) terminology, both the Concepts of Number and the 
Application sections would be more reflective of a student’s instrumental 
understanding, than it is of their relational understanding.  If we are to measure 
more relational understanding, we must ask students to solve problems that use 
multiple concepts and ask them to relate ideas to one another in a meaningful way.  
 
Sources in recent years have pointed to the need for open-ended problems and test 
items to truly measure a students mathematical understanding (Romberg, et al., 
1992) as outlined by the NCTM Standards (1989). Many assessments are now 
being created in an attempt to address this need. This study used three such open-
ended problems which were items released by NAEP in 1992. The results of this 
study with respect to these open-ended items are perhaps the most telling about the 
students’ relational understanding. The IMaST students out-performed the 
comparison group at a significant level.  In fact, while the IMaST students were 
typically viewed as “lower ability” than the comparison students, their total scores 
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as well as their scores for each item on the open-ended problems were consistently 
significantly higher.  This result is particularly interesting since these are problems 
that Skemp would classify as involving relational understanding, and required more 
thinking, reasoning, and communication.  One would think that students who have 
less instrumental understanding would struggle with these relational tasks, but such 
is not the case.   
 
While issues around testing always exist, there are other considerations which 
combine to make the results of this study more promising for the future of IMaST 
and students in similar programs. First, this is a new curriculum which involves a 
very different mode of instruction for most teachers. Meanwhile, the teachers of the 
comparison group have been using the same materials and methods for a number of 
years. One might assume that as teachers became more familiar with the problem-
solving, learning cycle approach to instruction utilized in IMaST, the results their 
students achieve would be even greater. Additionally, these results are based on the 
impact of one year of instruction. The students typically take the first quarter to 
become comfortable working in the non-traditional setting and format of the IMaST 
classroom. The results of multiple years of exposure to a similar program of study 
should show even more dramatic results. Longitudinal studies are needed to provide 
information on the lasting effects of the program.  
 
One limitation of this study is the lack of control for individual teacher differences 
and the impact IMaST may have on teachers of the comparison groups at the same 
school. For example, it is possible that either group at any school may simply have 
had a more effective teacher. It is also possible that discussions of activities and 
methods used with the IMaST group could impact the methods and activities used 
with the comparison group of students at the same school. Further studies need to be 
completed where comparison groups are isolated from the treatment group so cross-
contamination is not possible.  Additionally, larger scale studies are needed where 
analysis by individual teachers will result in large enough group sizes to make such 
analysis techniques feasible.  
 

Implications  
The manner in which we teach and present material, as well as the manner in which 
we assess understanding, make a difference as to what our students are able to do. 
The results of this study concur with findings of Shann (1977), Friend (1985), and 
Roth (1993): Students in interdisciplinary programs benefit from the experience of 
having mathematics and science inter-related on a daily basis.  Friend looked at the 
positive impacts on students attitudes, while Shann and Roth also considered overall 
achievement. This study considered the impact on different components of 
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mathematics achievement, to identify any strengths and weaknesses that students in 
an integrated program may develop.  
 
These results point to the importance of teaching and assessing in a manner which 
reflects the desired outcomes. If we want our students to become more powerful 
problem solvers, we must teach in a manner which emphasizes and assesses 
problem solving.  
 
If a middle school is considering moving toward a more integrated curriculum or an 
interdisciplinary approach to instruction, but is worried about the mathematics 
achievement of their students, the IMaST program can be a viable alternative. 
However, clear expectations and visions of instruction and assessment must be 
developed by the teachers, administrators, and parents of the students. If this is not 
done, inappropriate assessment methods may lead to the abandonment of promising 
practices and a return to teaching isolated skills and procedures over teaching for 
thinking and problem solving.  
 

Recommendations for Further Research 
The results reported here are based on a single school year in five schools. There are 
limitations in the study due to sample size (especially of the comparison group). 
There are also limitations based on the duration of the program. As a result the 
following additional research is recommended: 
• continue to replicate this study with larger samples and using class as a unit 

of study. 
• expand the study to include an item analysis of Concepts of Number section 

of the Stanford test. 
• continue to monitor these students as they progress through the remainder of 

their school career after only a limited time exposure to IMaST. 
• monitor students who complete a 2 or 3 year IMaST program for its 

immediate and lasting effects.  
• study science and technology achievement as well as mathematics 

achievement in an integrated program. 
• study attitudinal and affective issues related to the IMaST program. 
• complete comparative achievement studies with other innovative Standards-

based mathematics programs.  
 

Summary 
Overall, the evaluation results show that the use of the IMaST curriculum may 
foster the more investigative aspects of learning in students. The comparison group 
appears to excel in developing specific facts and definitions that must be committed 
to memory. That is, each approach tends to benefit the cognitive activities 
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associated with the format and focus of the instruction. It is clear from the data that 
the approaches to mathematics, science, and technology offered by the IMaST 
program are not injurious to students' progress. Hence if a school is considering a 
move toward a more constructivist, integrated approach to learning, and trying to 
focus more on problem solving than on isolated skills, the school personnel might 
want to consider an integrated approach such as IMaST as an alternative to a more 
traditional program.  
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Appendix A 
Student-Constructed Response Items 

and their Associated Scoring Rubrics (Dossey, 1993) 
 
The Sport Camp Problem 
Treena won a 7-day scholarship worth $1000 to the Pro-Shot Basketball Camp.  Round-trip 
travel expenses to the camp are $335 by air or $125 by train.  At the camp she must choose 
between a week of individual instruction at $60 per day or a week of group instruction at $40 
per day.  Treena’s food and other expenses are fixed at $45 per day.  If she does not spend 
any money other than the scholarship, what are all choices of travel and instruction plans that 
she could make?  Explain your reasoning.   
 
 
NAEP 6 point rubric for scoring: 
0 No response 
1 Incorrect - Student work is completely irrelevant or writes “I don’t know” 
2 Minimal – (a) Student indicates one or more options only with no supporting evidence, 

or (b) student work contains major mathematical errors and/or flaws in reasoning. 
3 Partial – The student (a) indicates one or more correct options; additional supporting 

work is present, but may contain some computational errors; or (b) demonstrates 
correct mathematics for one or two options, but does not indicate the options that are 
supported by his or her mathematics. 

4 Satisfactory – The student (a) shows correct mathematical evidence that Treena has 
three options, but the supporting work is incomplete; or (b) shows correct 
mathematical evidence for two of Treena’s three options and the supporting evidence 
is clear and complete. 

5 Extended – The correct solution indicates what the three possible options are and 
includes supporting work for each option.   
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The Radio Station Problem 
Radio station KMAT in Math City is 200 miles from radio station KGEO in Geometry City.  
Highway 7, a straight road, connects the two cities.  
 
KMAT broadcasts can be received up to 150 miles in all directions from the station, and 
KGEO broadcasts can be received up to 125 miles in all directions.  Radio waves travel from 
each radio station through the air, as represented below.    
 
 

Radio Station 

Radio Wave  
 
 
 
 
 
 
Draw a diagram that shows the following: 

• Highway 7 

• The location of the two radio stations 

• The part of Highway 7 where both radio stations can be received 
 

Be sure to label the distances along the highway and the length in miles of the part of the 
highway where both stations can be received.  

 
NAEP 6 point rubric for scoring: 
0 No response 
1 Student work is completely irrelevant or writes “I don’t know” 
2 Minimal - Diagram with only cities, Hwy. 7, and 200 miles labeled.  Some but not all 

distances labeled.  Does not recognize common broadcast area is a length along the 
highway. 

3 Partial - Diagram with cities, Hwy. 7, and 200 miles labeled.  Identifies common 
broadcast area along the highway.  Two or more radio distances not labeled. 

4 Satisfactory - Diagram with cities, Hwy. 7, and all distances labeled.  But omits or 
incorrectly computes the length of the highway along which both stations can be 
received 

5 Extended - An accurate well-labeled diagram (as described in the score 4 category), 
clearly indicating the portion of Hwy. 7 along which both radio stations can be 
received is 75 miles in length.   
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The Dots Problem 
A pattern of dots is shown below.  At each step, more dots are added to the pattern.  The 
number of dots added at each step is enough to allow the pattern of dots to continue to grow 
in the manner shown.  The pattern continues infinitely.   
 

(1st step) (2nd step) (3rd step) 
 
 

•  • 
2 dots 

 
•  •  • 
•  •  • 
6 dots 

•  •  •  • 
•  •  •  • 
•  •  •  • 
12 dots 

 
 

Marcy has to determine the number of dots in the 20th step, but doesn’t want to draw all 20 
pictures and then count the dots.   
 
Explain or show how she could do this and give the answer that Marcy should get for the 
number of dots.   
 
NAEP 6 point rubric for scoring: 
0 No response 
1 Student work is completely irrelevant or writes “I don’t know” 
2 Minimal – Student attempts to generalize or draws all 20 pictures in the pattern. 
3 Partial – Student provides a partially correct generalization  
4 Satisfactory – Student provides a correct generalization, but does not provide a correct 

20th step solution.  
5 Extended - Student provides a correct generalization, and the correct answer for the 

20th step.  
 


